Class-Specific Weighted Dominant Orientation Templates for Object Detection
نویسندگان
چکیده
We present a class-specific weighted Dominant Orientation Template (DOT) for class-specific object detection to exploit fast DOT, although the original DOT is intended for instance-specific object detection. We use automatic selection algorithm to select representative DOTs from training images of an object class and use three types of 2D Haar wavelets to construct weight templates of the object class. To generate class-specific weighted DOTs, we use a modified similarity measure to combine the representative DOTs with weight templates. In experiments, the proposed method achieved object detection that was better or at least comparable to that of existing methods while being very fast for both training and testing.
منابع مشابه
Fast Rotation Invariant Object Detection with Gradient based Detection Models
Accurate object detection has been studied thoroughly over the years. Although these techniques have become very precise, they lack the capability to cope with a rotated appearance of the object. In this paper we tackle this problem in a two step approach. First we train a specific model for each orientation we want to cover. Next to that we propose the use of a rotation map that contains the p...
متن کاملTransform-invariant Image Decomposition with Similarity Templates
Recent work has shown impressive transform-invariant modeling and clustering for sets of images of objects with similar appearance. We seek to expand these capabilities to sets of images of an object class that show considerable variation across individual instances (e.g. pedestrian images) using a representation based on pixel-wise similarities, similarity templates. Because of its invariance ...
متن کاملMaking Templates Rotationally Invariant: An Application to Rotated Digit Recognition
This paper describes a simple and efficient method to make template-based object classification invariant to in-plane rotations. The task is divided into two parts: orientation discrimination and classification. The key idea is to perform the orientation discrimination before the classification. This can be accomplished by hypothesizing, in turn, that the input image belongs to each class of in...
متن کاملMaking Templates Rotationally Invariant. An Application to Rotated Digit Recognition
This paper describes a simple and efficient method to make template-based object classification invariant to in-plane rotations. The task is divided into two parts: orientation discrimination and classification. The key idea is to perform the orientation discrimination before the classification. This can be accomplished by hypothesizing, in turn, that the input image belongs to each class of in...
متن کاملMaking Templates Rotationally Invariant: An Application to Rotated Digit Recognition
This paper describes a simple and efficient method to make template-based object classification invariant to in-plane rotations. The task is divided into two parts: orientation discrimination and classification. The key idea is to perform the orientation discrimination before the classification. This can be accomplished by hypothesizing, in turn, that the input image belongs to each class of in...
متن کامل